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1. Introduction

One of the fundamental building blocks of numerical computing is the ability
to solve linear systems

Ax =b. (1.1)

These systems arise very frequently in scientific computing, for example from
finite difference or finite element approximations to partial differential equa-
tions, as intermediate steps in computing the solution of nonlinear problems
or as subproblems in linear and nonlinear programming.

For linear systems of small size, the standard approach is to use direct
methods, such as Gaussian elimination. These algorithms obtain the solu-
tion of (1.1) based on a factorization of the coefficient matrix A. However, in
practice linear systems arise that can be arbitrarily large; this is particularly
true when solving partial differential equations. Fortunately, the resulting
systems usually have some special structure; sparsity, i.e. matrices with only
a few nonzero entries, is the most common case. Often, direct methods can
be adapted to exploit the special structure of the matrix and then remain
useful even for large linear systems. However, in many cases, especially
for systems arising from three-dimensional partial differential equations, di-
rect approaches are prohibitive both in terms of storage requirements and
computing time, and then the only alternative is to use iterative algorithms.

Especially attractive are iterative methods that involve the coefficient ma-
trix only in the form of matrix—vector products with A or A#. Such schemes
naturally exploit the special structure of large sparse linear systems. They
are also well suited for the solution of certain dense large systems for which
matrix—vector products can be obtained cheaply. The most powerful iter-
ative scheme of this type is the conjugate gradient method (CG) due to
Hestenes and Stiefel (1952), which is an algorithm for solving Hermitian
positive definite linear systems. Although CG was introduced as early as
1952, its true potential was not appreciated until the work of Reid (1971)
and Concus et al. (1976) in the 1970s. Since then, a considerable part of
the research in numerical linear algebra has been devoted to generalizations
of CG to indefinite and nonHermitian linear systems.

A straightforward extension to general nonHermitian matrices is to apply
CG to either one of the Hermitian positive definite linear systems

AfAx = AFD, (1.2)
or
AAfy =b, x= Ay (1.3)

Solving (1.2) by CG was mentioned already by Hestenes and Stiefel (1952);
we will refer to this approach as CGNR. Applying CG to (1.3) was proposed
by Craig (1955); we will refer to this second approach as CGNE. Although
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there are special situations where CGNR or CGNE are the optimal exten-
sions of CG, both algorithms generally converge very slowly and hence they
are not usually satisfactory generalizations of CG to arbitrary nonHermitian
matrices.

Consequently, CG-type algorithms were sought that are applied to the
original system (1.1), rather than (1.2) or (1.3). A number of such methods
have been proposed since the mid-1970s, the most widely used of which is the
generalized minimum residual algorithm (GMRES) due to Saad and Schultz
(1986). While GMRES and related schemes generate at each iteration op-
timal approximate solutions of (1.1), their work and storage requirements
per iteration grow linearly. Therefore, it becomes prohibitive to run the full
version of these algorithms and restarts are necessary, which often leads to
very slow convergence.

For this reason, since the late 1980s, research in nonHermitian matrix it-
erations has focused mainly on schemes that can be implemented with low
and roughly constant work and storage requirements per iteration. A num-
ber of new algorithms with this feature have been proposed, all of which
are related to the nonsymmetric Lanczos process. It is these recent devel-
opments in CG-type methods for nonHermitian linear systems that we will
emphasize in this survey.

The outline of this paper is as follows. In Section 2, we present some
background material on general Krylov subspace methods, of which CG-
type algorithms are a special case. We recall the outstanding properties
of CG and discuss the issue of optimal extensions of CG to nonHermitian
matrices. We also review GMRES and related methods, as well as CG-
like algorithms for the special case of Hermitian indefinite linear systems.
Finally, we briefly discuss the basic idea of preconditioning. In Section 3,
we turn to Lanczos-based iterative methods for general nonHermitian linear
systems. First, we consider the nonsymmetric Lanczos process, with par-
ticular emphasis on the possible breakdowns and potential instabilities in
the classical algorithm. Then we describe recent advances in understanding
these problems and overcoming them by using look-ahead techniques. More-
over, we describe the quasi-minimal residual algorithm (QMR) proposed by
Freund and Nachtigal (1990), which uses the look-ahead Lanczos process to
obtain quasi-optimal approximate solutions. Next, a survey of transpose-free
Lanczos-based methods is given. We conclude this section with comments on
other related work and some historical remarks. In Section 4, we elaborate
on CGNR and CGNE and we point out situations where these approaches
are optimal. The general class of Krylov subspace methods also contains
parameter-dependent algorithms that, unlike CG-type schemes, require ex-
plicit information on the spectrum of the coefficient matrix. In Section 5,
we discuss recent insights into obtaining appropriate spectral information
for parameter-dependent Krylov subspace methods. After that, we turn
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to special classes of linear systems. First, in Section 6, we consider CG-
type algorithms for complex symmetric and shifted Hermitian matrices. In
Section 7, we review cases of dense large linear systems for which iterative
algorithms are a viable alternative to direct methods. Finally, in Section 8,
we make some concluding remarks.

Today, the field of iterative methods is a rich and extremely active research
area, and it has become impossible to cover in a survey paper all recent
advances. For example, we have not included any recent developments in
preconditioning of linear systems, nor any discussion of the efficient use of
iterative schemes on advanced architectures. Also, we would like to point
the reader to the following earlier survey papers. Stoer (1983) reviews the
state of CG-like algorithms up to the early 1980s. In the paper by Axelsson
(1985), the focus is on preconditioning of iterative methods. More modern
iterative schemes, such as GMRES, and issues related to the implementation
of Krylov subspace methods on supercomputers are treated in the survey
by Saad (1989). An annotated bibliography on CG and CG-like methods
covering the period up to 1976 was compiled by Golub and O’Leary (1989).
Finally, readers interested in direct methods for sparse linear systems are
referred to the book by Duff et al. (1986) and, for the efficient use of these
techniques on parallel machines, to Heath et al. (1991).

Throughout the article, all vectors and matrices are in general assumed
to be complex. As usual, i = +/—1. For any matrix M = [m ], we use the
following notation:

M = [m;;] = the complex conjugate of M,
MT = [my;] = the transpose of M,
MH = M’ = the Hermitian of M ,

ReM = (M + M)/2 = the real part of M,
ImM = (M —M)/(2i) = the imaginary part of M,
o(M) the set of singular values of M,
Omax(M) the largest singular value of M,
Omin(M) = the smallest singular value of M,
| M|y Omax(M) = the 2-norm of M,
RZ(M) = amax(M)/amin(M)
the 2-condition number of M, if M has full rank.

For any vector ¢ € C™ and any matrix B € C™*™, we denote by
K,(c, B) = span{c, Bc,...,B""Ic}
the nth Krylov subspace of C™, generated by ¢ and B. Furthermore, we
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use the following notation:

lel, = vecfe = Euclidean norm of c,
el = VeFBe

I

B-norm of ¢, if B is Hermitian positive definite,
A(B) = the set of eigenvalues of B,

Amax(B) = the largest eigenvalue of B, if B is Hermitian,

Amin(B) = the smallest eigenvalue of B, if B is Hermitian.

Moreover, we denote by I,, the n x n identity matrix; if the dimension n
is evident from the context, we will simply write I. The symbol 0 will be
used both for the number 0 and for the zero matrix; in the latter case, the
dimension will always be apparent. We denote by

P,={o(N)=0y+ oA+ --+0,A" | 0g,04,...,0, €C}

the set of complex polynomials of degree at most n.

Throughout this paper, N denotes the dimension of the coefficient matrix
A of (1.1) and A € CV*¥N is in general nonHermitian. In addition, unless
otherwise stated, A is always assumed to be nonsingular. Moreover, we use
the following notation:

X initial guess for the solution of (1.1),
x, = nth iterate,

r, = b-— Ax, = nth residual vector.

If it is not apparent from the context which iterative method we are con-
sidering, quantities from different algorithms will be distinguished by super-

scripts, e.g. ng or xSMRES.

2. Background

In this section, we present some background material on general Krylov
subspace methods.

2.1. Krylov subspace methods

Many iterative schemes for solving the linear system (1.1) belong to the class
of Krylov subspace methods: they produce approximations x,, to A~'b of
the form

X, €x9+K,(rs,4), n=12,.... (2.1)
Here, x, € CV is any initial guess for the solution of (1.1), ry = b — Ax, is
the corresponding residual vector, and K, (rg, A) is the nth Krylov subspace
generated by ry and A. In view of

Ka(ro, A) = {8(A)ro | 6 € P, 1}, (2.2)
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schemes with iterates (2.1) are also referred to as polynomial-based iterative
methods. In particular, the residual vector corresponding to the nth iterate
x,, can be expressed in terms of polynomials:

r, =b - Ax, =y, (A)r, (2.3)

where
Y, €P,, with %,(0)=1. (2.4)

Generally, any polynomial satisfying (2.4) is called an nth residual polyno-
mial.

As (2.3) shows, the goal in designing a Krylov subspace method is to
choose at each step the polynomial ¥,, such that r,, ~ 0 in some sense. One
option is to actually minimize some norm of the residual r,,:

r,[| = min b-A
Ieall =, min b= x| -
=  min A)rll. '
e, (Aol
Here || - || is a vector norm on C¥, which may even depend on the iteration

number n (see Section 3.3). Another option is to require that the residual
satisfies a Galerkin-type condition:

sfr. =0 forall seS,, (2.6)

where S,, C C¥ is a subspace of dimension n. Note that an iterate satisfying
(2.6) need not exist for each n; in contrast, the existence of iterates with
(2.5) is always guaranteed. The point is that iterates with (2.5) or (2.6) can
be obtained from a basis for K,(ry, A) (and a basis for S, in the case of
(2.6)), without requiring any a priori choice of other iteration parameters.

In contrast to parameter-free schemes based on (2.5) or (2.6), parameter-
dependent Krylov subspace methods require some advance information on
the spectral properties of A for the construction of v,,. Usually, knowledge
of some compact set G with

A4)cGcC, 0¢gg, (2.7)

is needed. For example, assume that A is diagonalizable, and let U be any
matrix of eigenvectors of A. For the case of the Euclidean norm, it then
follows from (2.3) and (2.7) that

firnll2
< k9(U) max A
”1‘0”2 2( ) AEA(A) l¢n( )l

< Ky(U) max [ (A)]. (2.8)

Ideally, one would like to choose the residual polynomial 3, such that the
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right-hand side in (2.8) is minimal, i.e.
max [¢, ()] = ax |(A)]- (2.9)

PYEPn: ¢(0) 1 Aeg

Unfortunately, the exact solution of the approximation problem (2.9) is
known only for a few special cases. For example, if G is a real interval,
then shifted and scaled Chebyshev polynomials are optimal in (2.9); the
resulting algorithm is the well-known Chebyshev semi-iterative method for
Hermitian positive definite matrices (see Golub and Varga, 1961). Later,
Manteuffel (1977) extended the Chebyshev iteration to the class of non-
Hermitian matrices for which G in (2.7) can be chosen as an ellipse. We
remark that, in this case, Chebyshev polynomials are always nearly opti-
mal for (2.9), but — contrary to popular belief — in general they are not
the exact solutions of (2.9), as was recently shown by Fischer and Freund
(1990, 1991). The solution of (2.9) is also known explicitly for complex line
segments G that are parallel to the imaginary axis and symmetric about the
real line (see Freund and Ruscheweyh, 1986); this case corresponds to shifted
skew-symmetric matrices A of the form (2.14). In the general case, however,
the exact solution of (2.9) is not available and is expensive to compute nu-
merically. Instead, one chooses polynomials that are only asymptotically
optimal for (2.9). An elegant theory for semi-iterative methods of this type
was developed by Eiermann et al. (1985).

In this survey, we will focus mainly on parameter-free algorithms with iter-
ates characterized by (2.5) or (2.6). Parameter-dependent Krylov subspace
methods will be only briefly discussed in Section 5.

2.2. CG and optimal extensions

Classical CG is a Krylov subspace method for Hermitian positive definite
matrices A with two outstanding features. First, its iterates x,, satisfy a
minimization property, namely (2.5) in the A~!-norm:
b — Ax, | 4-1 = min b — Ax|] 4. 2.10
b Ax,llpm = min b= Ax| s (2.10)
Secondly, x,, can be computed efficiently, based on simple three-term recur-

rences.
An ideal extension of CG to nonHermitian matrices A would have similar

features. However, since in general || - || ,-1 is no longer a norm, one usually
replaces (2.10) with either the minimization property
Ib—Ax,ll;= _ min  |b—Ax|, (2.11)

xexo+Kn(ro,A)
or the Galerkin condition
sH(b-Ax,)=0 forall se€K,(ry,A). (2.12)
In the sequel, a Krylov subspace algorithm with iterates (2.1) defined by
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(2.11) or (2.12) will be called a minimal residual (MR) method or an or-
thogonal residual (OR) method, respectively. We remark that (2.10) and
(2.12) are equivalent for Hermitian positive definite A, and hence (2.12) is
an immediate extension of (2.10). Unfortunately, for nonHermitian A and
even for Hermitian indefinite A, an iterate x,, with (2.12) need not exist at
each step n. In contrast, there is always a unique iterate x,, € x9+K,(r,, 4)
satisfying (2.11). We note that the conjugate residual algorithm (CR) due
to Stiefel (1955) is a variant of CG that generates iterates characterized by
(2.11) for the special case of Hermitian positive definite A.

An ideal CG-like scheme for solving nonHermitian linear systems would
then have the following features:

1  its iterates would be characterized by the MR or OR property; and
it could be implemented based on short vector recursions, so that work
and storage requirements per iteration would be low and roughly con-
stant.

Unfortunately, it turns out that, for general matrices, the conditions 1 and 2
cannot be fulfilled simultaneously. This result is due to Faber and Manteuffel
(1984, 1987) who proved the following theorem (see also Voevodin (1983)
and Joubert and Young (1987)).

Theorem 2.1 (Faber and Manteuffel, 1984 and 1987.) Except for a few
anomalies, ideal CG-like methods that satisfy both requirements 1 and 2
exist only for matrices of the special form

A=¢®(T+0ol), where T=TH @dcR, oecC. (2.13)

The class (2.13) consists of just the shifted and rotated Hermitian matri-
ces. Note that the important subclass of real nonsymmetric matrices

A=I-S, where S=-8T isreal, (2.14)

is contained in (2.13), with e =i, 0 = —i, and T = iS. Concus and Golub
(1976) and Widlund (1978) were the first to devise an implementation of a
OR method for the family (2.14). The first MR algorithm for (2.14) was
proposed by Rapoport (1978), and different implementations were given by
Eisenstat et al. (1983) and Freund (1983). For a brief discussion of actual
CG-type algorithms for the general class of complex nonHermitian matrices
(2.14), we refer the reader to Section 6.2.

Finally, we remark that ideal CG-like methods also exist for the more
general family of shifted and rotated B-Hermitian matrices

A=Y (T +oI), where TB=(TB)#, 9ecR, occC. (215)
Here B is a fixed given Hermitian positive definite N X N matrix (see Ashby
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et al., 1990). However, since for any matrix A of the form (2.15),
AI — B1/2AB—1/2

is of the type (2.13), without loss of generality the case (2.15) can always be
reduced to (2.13).

2.3. CG-type algorithms for Hermitian indefinite linear systems

The family (2.13) also contains Hermitian indefinite matrices; next we review
CG-type methods for this special case.

Luenberger (1969) was the first to propose a modification of standard CG
for Hermitian indefinite matrices; however, his algorithm encountered some
unresolved computational difficulties. The first numerically stable schemes
for Hermitian indefinite linear systems were derived by Paige and Saunders
(1975). Their SYMMLQ algorithm is an implementation of the OR ap-
proach and hence the immediate generalization of classical CG. As pointed
out earlier, an OR iterate x,, satisfying (2.12) need not exist for each n, and,
in fact, SYMMLQ generates x,, only indirectly. Instead of the OR iterates,
a second sequence of well-defined iterates x is updated, from which exist-
ing x,, can then be obtained cheaply. Paige and Saunders also proposed the
MINRES algorithm, which produces iterates defined by the MR property
(2.11) and thus can be viewed as an extension of CR to Hermitian indefinite
matrices. SYMMLQ and MINRES both use the Hermitian Lanczos recur-
sion to generate an orthonormal basis for the Krylov subspaces K ,,(rg, 4),
and, like the latter, they can be implemented based on simple three-term
recurrences. We would like to stress that the work of Paige and Saunders
was truly pioneering, in that they were the first to extend CG beyond the
class of Hermitian positive definite matrices in a numerically stable manner.

SYMMLAQ is also closely connected with an earlier algorithm due to Frid-
man (1963), which generates iterates xME € x,+ K,,(Ar,, A) defined by the
minimal error (ME) property

|47 —xME, = min 47D x|, (2.16)
Unfortunately, Fridman’s original implementation of the ME approach is un-
stable. Fridman’s algorithm was later rediscovered by Fletcher (1976) who
showed that, in exact arithmetic, the ME iterate x,"{lE coincides with the
auxiliary quantity xZ in SYMMLQ. Hence, as a by-product, SYMMLQ also
provides a stable implementation of the ME method. Another direct stabi-
lization of Fridman’s algorithm was proposed by Stoer and Freund (1982).

Finally, we remark that Chandra (1978) proposed the SYMMBK algo-
rithm, which is a slightly less expensive variant of SYMMLQ, and derived
another stable implementation of the MR method, different from MINRES.
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2.4. GMRES and related algorithms

We now return to Krylov subspace methods for general nonHermitian ma-
trices. Numerous algorithms for computing the iterates characterized by the
MR or OR property (2.11) or (2.12), respectively, have been proposed; see
Vinsome (1976), Axelsson (1980, 1987), Young and Jea (1980), Saad (1981,
1982, 1984), Elman (1982), Saad and Schultz (1985, 1986). Interestingly, a
simple implementation of the MR approach was already described in a paper
by Khabaza (1963), which is not referenced at all in the recent literature.
In view of Theorem 2.1, all these algorithms generally involve long vector
recursions, and typically work and storage requirements per iteration grow
linearly with the iteration index n. Consequently, in practice, one cannot
afford to run the full algorithms, and it becomes necessary to use restarts
or to truncate the vector recursions.

The most elegant and most widely used scheme of this type is GMRES,
due to Saad and Schultz (1986), and here we sketch only this particular
algorithm. GMRES is modelled after MINRES, where now a generalization
of the Hermitian Lanczos process, namely the Arnoldi process (see Arnoldi
(1951) and Saad (1980)), is used to generate orthonormal basis vectors for
the Krylov subpaces K, (r,, A).

Algorithm 2.2 (Arnoldi process)
0) Choose v, € CV with ||v,[l, = 1.
Forn=1,2,...,do:
1For k=1,2,...,n, compute
hyy, = Vi Av,,.
2 Set
n
Vnp1 = Av, = ) hyvy.
k=1
3 Compute
h"n+1,n = ||‘7n+1|]2-
41f h,yy, =0, stop.
Otherwise, set

Vat1 = vn+1/hn+1,n'

The vector recurrences in Step 2 of Algorithm 2.2 can be rewritten compactly
in matrix form as follows:

AV, =V, HO, (2.17)
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where
V,=[vy va - Vv,] (2.18)
has orthonormal columns, and
(A1 Pag Rin |
hyy :
HO=|,o .. - : (2.19)
: e hppey Bpg
L0 o 0 hnyga

is an (n + 1) x n upper Hessenberg matrix of full rank n.
If one chooses the starting vector v, = ry/||rg||, in Algorithm 2.2, then

all possible iterates (2.1) can be parametrized as follows:
X, =X+ V,2,, where z, € C" (2.20)

Moreover, with (2.20) and (2.17), the minimal residual property (2.11) re-
duces to the (n + 1) x n least squares problem

"dn - Hf(ze)zn”2 = min ”dn - Hr(ze)zllz’ (221)
zeC™*
where
d, =[lrolly 0 --- 0)T eR™. (2.22)

GMRES is an implementation of the minimal residual approach (2.11) that
obtains the nth MR iterate x,, by first running n steps of the Arnoldi process
and then solving the (n + 1) X n least squares problem (2.21). Note that
(2.21) always has a unique solution, since H®) is of full column rank. For
a detailed description of the algorithm, we refer the reader to Saad and
Schultz (1986).

The Arnoldi Algorithm 2.2 can also be used to compute the nth OR iterate
characterized by (2.12). Indeed, as Saad (1981) has shown, x,, is again of
the form (2.20) where z,, is now the solution of the n x n linear system

Hyzz,=d,_;. (2.23)

Here
Hn = [In O]ng) (224)

is the matrix obtained from H® by deleting the last row in (2.19). The
problem with this approach is that H,, can be singular, and then the linear
system (2.23) is inconsistent. In fact, H,, is singular if, and only if, no OR
iterate satisfying (2.12) exists.

An interesting alternative is to use quasi-Newton techniques, such as Broy-
den’s method (Broyden, 1965). Although designed for general nonlinear
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equations, these schemes can be applied to nonHermitian linear systems as
a special case. In addition to the iterates x,,, these algorithms also produce
approximations to A, updated from step to step by a simple rank-1 correc-
tion. While these schemes look different at a first glance, they also belong
to the class of Krylov subspace methods, as was first observed by Elman
(1982). Furthermore, Deuflhard et al. (1990) have demonstrated that Broy-
den’s rank-1 update combined with a suitable line search strategy leads to
an iterative algorithm that is competitive with GMRES. Eirola and Nevan-
linna (1989) have proposed two methods based on a different rank-1 update
and shown that one of the resulting schemes is mathematically equivalent
to GMRES. These algorithms were studied further by Vuik (1990).

2.5. Preconditioned Krylov subspace methods

For the solution of realistic problems, it is crucial to combine Krylov sub-
space methods with an efficient preconditioning technique. The basic idea
here is as follows. Let M be a given nonsingular N x N matrix, which
approximates in some sense the coefficient matrix A of the original linear
system (1.1). Moreover, assume that M is decomposed in the form

M = MM, (2.25)

The Krylov subspace method is then used to solve the preconditioned linear
system

A'X =V, (2.26)
where
A =MTAMSY, b'=Mlb, x' = M,x.

Clearly, (2.26) is equivalent to (1.1). This process generates approximate
solutions of (2.26) of the form

x, €xh+K, (t),4). (2.27)

Usually, one avoids the explicit calculation of primed quantities, and instead
one rewrites the resulting algorithm in terms of the corresponding quantities
for the original system. For example, iterates and residual vectors for (1.1)
and (2.26) are connected by

x, = M;'x!, and r,= Mr,. (2.28)
In particular, note that, by (2.27) and (2.28), the resulting approximations
to A~1b are of the form

X, €EXx9+ K, (M'er,M‘lA) .

We remark that the special cases M; = I or M, = I in (2.25) are referred to
as right or left preconditioning, respectively. For right preconditioning, by
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(2.28), the preconditioned residual vectors coincide with their counterparts
for the original system. For this reason, right preconditioning is usually
preferred for MR-type Krylov subspace methods based on (2.11). Moreover,
if A has some special structure, the decomposition (2.25) can often be chosen
such that the structure is preserved for A’. For example, for Hermitian
positive definite A this is the case if one sets M, = M{ in (2.25).

Obviously, there are two (in general conflicting) requirements for the
choice of the preconditioning matrix M for a given Krylov subspace method.
First, M~ should approximate A~! well enough so that the algorithm ap-
plied to (2.26) will converge faster than for the original system (1.1). On
the other hand, preconditioned Krylov subspace methods require at each
iteration the solution of one linear system of the type

Mp=gq. (2.29)

Moreover, for algorithms that involve matrix-vector products with A7 (see
Section 3), one has to solve an additional linear system of the form

MTp=q. (2.30)

Therefore, the preconditioner M needs to be such that linear systems (2.29)
respectively (2.30) can be solved cheaply. In this article, the problem of how
to actually construct such preconditioners is not addressed at all. Instead,
we refer the reader to the papers by Axelsson (1985) and Saad (1989) for
an overview of common preconditioning techniques.

Finally, one more note. In Section 3, explicit descriptions of some Krylov
subspace algorithms are given. For simplicity, we have stated these algo-
rithms without preconditioning. It is straightforward to incorporate pre-
conditioning by using the transition rules (2.28).

3. Lanczos-based Krylov subspace methods

In this section, we discuss Krylov subspace methods that are based on the
nonsymmetric Lanczos process.

3.1. The classical Lanczos algorithm and BCG

The nonsymmetric Lanczos method was proposed by Lanczos (1950) as a
means to reduce an arbitrary matrix A € CV*¥ to tridiagonal form. One
starts the process with two nonzero vectors v, € CV and w; € CV and then
generates basis vectors {v;} for K, (v}, 4) and {w,} for K,(w,, AT) such
that the bi-orthogonality condition

T - 1 k= ja
WiVe = {0 otherwise, (3.1)

holds. The point is that the two bases can be built with just three-term
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recurrences, thus requiring minimal amounts of work and storage per step.
The complete algorithm is straightforward and can be stated as follows.
Algorithm 3.1 (Classical Lanczos method)
0 Choose ¥, W, € CV with ¥;, W, #0.
Set vop = wgy = 0.
Forn=1,2,...,do:
1 Compute 6, = WI¥,.
If 6, =0, set L =n—1 and stop.
2 Otherwise, choose 8,7, € C with 8,7, = §6,,.
Set v, =V,/v, and w, =W, /3,.
3 Compute
a, =wlAv,,
V1 = AV, — o v, — BrVn_1
ﬁn-{-l = ATwn Wy~ T Wh_1-
Ifv,,;=00r W,,; =0, set L =n and stop.
The particular choice of the coefficients a,,, 3,, and ~, ensures that the

bi-orthogonality relation (3.1) is satisfied.
Similar to (2.18), (2.19) and (2.24), let

Va=lv vy o v, Wo=[w w - w],
[ay B 0 -+ 0
Y2 Qg . :
H® = 0 R € CntD)xn (3.2)
. '._ '.. . ﬂn
: R
[0 - - 0 Ypp1d

and
H,=[I, 0]HY.
Then the recurrences in the Lanczos process can be written compactly as
AVy=VHy +[0 o 0 Fopyl,
ATW, =W, HT +[0 -+ 0 W],
while the bi-orthogonality relation (3.1) can be written as
WIv, =1,. (3.4)

(3.3)
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We note that the Lanczos method is invariant under shifts of the form
A— A+o0l, where og€C,

in that the process generates the same vectors {v;} and {w;} and only the
tridiagonal matrix (3.2) is shifted:

H,—H, +o0l,

In particular, for the Lanczos algorithm it is irrelevant whether the matrix
A is singular or not.

Moreover, we would like to stress that the Lanczos process can also be
formulated with A¥ instead of AT, by simply conjugating the three-term
recurrences for the vectors {w,}. We chose the transpose because one can
then avoid complex conjugated recurrence coefficients. Finally, we remark
that the Lanczos process reduces to only one recursion in two important
special cases, namely A = A¥ (with starting vectors W, = ¥,) and complex
symmetric matrices A = AT (with starting vectors W; = V,). In both cases,
one must also choose 8, = 7,. In the first case, the resulting algorithm is
the well-known Hermitian Lanczos method, which has been studied exten-
sively (see, e.g., Golub and Van Loan (1989) and the references therein). In
the second case, the resulting algorithm is the complex symmetric Lanczos
process.

In exact arithmetic, the classical Lanczos method terminates after a finite
number of steps. As indicated in Algorithm 3.1, there are two different sit-
uations in which the process can stop. The first one, referred to as regular
termination, occurs when vy, ; = 0 or wy; = 0. In this case, the Lanc-
zos algorithm has found an invariant subspace of CV: if v, , = 0, then
the right Lanczos vectors v,,..., v, span an A-invariant subspace, while if
w1 = 0, then the left Lanczos vectors wy,...,w; span an AT-invariant
subspace. The second case, referred to as a serious breakdown by Wilkin-
son (1965), occurs when wiv; = 0 with neither v; = 0 nor w;, = 0. In
this case, the Lanczos vectors span neither an A-invariant subspace nor an
AT-invariant subspace of C. We will discuss in Section 3.2 techniques for
handling the serious breakdowns. We remark that, in the special case of the
Hermitian Lanczos process, breakdowns are excluded. In contrast, break-
downs can occur in the complex symmetric Lanczos algorithm (see Cullum
and Willoughby (1985) and Freund (1989b, 1992)).

The Lanczos algorithm was originally introduced to compute eigenvalues,
as — in view of (3.3) - the eigenvalues of H,, can be used as approxima-
tions for eigenvalues of A. However, Lanczos (1952) also proposed a closely
related method, the biconjugate gradient algorithm (BCG), for solving gen-
eral nonsingular nonHermitian linear systems (1.1). By and large, BCG was
ignored until the mid-1970s, when Fletcher (1976) revived the method.

The BCG algorithm is a Krylov subspace approach that generates iterates
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defined by a Galerkin condition (2.6) with the special choice of subspaces
S, ={s=w ’ w € K, (Fy, AT)}.
Here, F; is a nonzero starting vector discussed later. The standard imple-
mentation of the BCG method is as follows.
Algorithm 3.2 (BCG method)
0 Choose x, € CV and set q; = ry = b — Ax,,.
Choose F, € CN, ¥, # 0, and set g, = T, pp = F§ .
Forn=1,2,...,do:

1 Compute
On-17~ Eig—lAqn—l’
Qp_1=Pn-1/0n_1»
Xp = Xp1 + 1901
T, =Ty 1~ ay_149, ),
i:n = i:n—l - an—lAan—l'
2 Compute
pn=FrTn,
Bn = Pn/Pn-1>

q, =T, + ﬂnqn—l’
(in = fn + /Bn(ln—l'
3Ifr, =0orr, =0, stop.

Note that BCG requires a second nonzero starting vector ¥ € C¥, which
can be chosen freely. Usually, one sets T = r( or ¥, = T, or one chooses T
as a vector with random entries.

The BCG algorithm is the archetype of an entire class of Lanczos-based
Krylov subspace methods for nonHermitian matrices, some of which we will
discuss later. Unfortunately, BCG typically exhibits an erratic convergence
behaviour with wild oscillations in the residual norm ||r,,||,. Even worse,
the BCG process can break down completely. More precisely, the BCG
Algorithm 3.2 cannot be continued if

qz—lAqn—l = 07 fn——l 71'. 0’ e # 07 (35)
or if
fg:—lrn—l = O$ i:11,—1 7é 07 rn_l # 0. (36)

The source of the breakdown (3.5) is the Galerkin condition (2.6) used to
define the iterates. As was pointed out in Section 2.2, the existence of an
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iterate satisfying (2.6) is not guaranteed at every step, and in fact (3.5) oc-
curs if, and only if, no BCG iterate exists. Furthermore, it can be shown
that (3.5) is equivalent to the Lanczos matrix H,, being singular. The source
of the second breakdown (3.6) is the underlying nonsymmetric Lanczos pro-
cess, which can have a serious breakdown. It turns out that the vectors
r,_; and ¥,_, in the BCG Algorithm 3.2 are scalar multiples of the vec-
tors v, and w,,, respectively, that are generated by the classical Lanczos
Algorithm 3.1 started with

V,=r; and W;=F,
Hence, a breakdown in the Lanczos process will be parallelled by a break-
down (3.6) in the BCG algorithm.

As the earlier discussion shows, BCG, while requiring little work and stor-
age per step, is susceptible to breakdowns and numerical instabilities. In
addition, another possible disadvantage of the classical BCG algorithm is its
use of the transpose of A, which may not be readily available in some situ-
ations. As a result, variants of BCG were sought which would preserve the
low work and storage requirements, while curing the possible breakdowns
and avoiding the use of the transpose. In the next section, we will discuss the
look-ahead Lanczos algorithm, an extension of the Lanczos method which
handles in almost all cases the serious breakdowns in the Lanczos process.
In Section 3.4 we present the quasi-minimal residual approach, based on the
look-ahead Lanczos algorithm and using a quasi-minimization property to
avoid the breakdowns caused by the Galerkin condition. Finally, in Sec-
tion 3.5 we survey some of the so-called transpose-free algorithms, which
typically replace the multiplication by AT in the BCG algorithm by one or
more multiplications by A.

3.2. A look-ahead Lanczos algorithm

One of the possible terminations of the Lanczos algorithm is a serious break-
down, when §,, = 0 in Algorithm 3.1, with neither v, =0 nor w, = 0. Asa
result, the vectors ¥,, and W,, cannot be scaled to obtain the Lanczos vectors
v,, and w,, corresponding to the basis vectors A"v; and (AT)"w,. Further-
more, it turns out that even if v, and w,, were computed using a different
scaling method, the next pair of vectors v,,,, and W, ; could not be com-
puted so as to fulfil (3.1). The problem here is not just one of scaling, but
also that the bi-orthogonality required of the vectors v,,,; and W, ; cannot
be satisfied. However, it could happen that the bi-orthogonality condition
(3.1) can once again be fulfilled for a pair of vectors corresponding to some
higher power of A and AT. A procedure which somehow advances to this
next pair of Lanczos vectors will be called a look-ahead Lanczos procedure.

The main idea behind the look-ahead Lanczos algorithms is to relax the
bi-orthogonality relation (3.1) when a breakdown is encountered. For each
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fixed n = 1,2,..., the vectors v,,...,v, and w,,...,w, generated by the
look-ahead procedure can be grouped into ! = [(n) blocks
VE =[Va, Vaur 0 Vaa-1ls k=1 1—1
WO =[w, Wpi 0 Wea], T
and
v = [V, Vo1 " Vals
w® = [an Woa1 o w,],
where

l=n<ny <" < <. <y <n<nyy,.

The blocks are constructed so that (3.1) is relaxed to

(W(j))T (v®) = {OD('“) gj ; I’: ik=1,....1,

where D® is nonsingular for ¥ = 1,...,I — 1, and D® is nonsingular if
n = ny; — 1. The first vectors v, and w,,_ in each block are called regular,
and the remaining vectors are called inner. We note that, in practice, for
reasons of stability, the computed vectors are usually scaled to have unit
length (see Taylor, 1982).

Two such look-ahead procedures have been proposed, one by Parlett et
al. (1985), and a second one by Freund et al. (1991b). The Freund et al.
implementation requires the same number of inner products per step as the
classical Lanczos algorithm, and reduces to the classical Lanczos procedure
in the absence of look-ahead steps. In contrast, the Parlett et al. imple-
mentation always requires more work per step and does not reduce to the
classical Lanczos algorithm in the absence of look-ahead steps. It also does
not generalize easily to blocks of more than two vectors. Therefore, we will
focus on the implementation proposed by Freund et al.. The basic structure
of this look-ahead Lanczos algorithm is as follows.

Algorithm 3.3 (Sketch of the look-ahead Lanczos process)
0 Choose vy, w; € CV with ||v, ||, = ||wy]l, = 1.
Set V) =v,, W) = w,, D) = (W)Ty ),
Setny=1,1l=1,vo=wy=0,V=Wy=0,p,=¢ =1.
Forn=1,2,...,do:
1 Decide whether to construct v, , and w,,, | as regular or inner vectors

and go to Steps 2 or 3, respectively.
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2 (Regular step.) Compute
Vg1 = Av, — VO(DO)H (WD) T 4v,
_ V(l-—l) (D(l—l))—l(W(l—l))TAvn,

3.7
o1 = ATw, — WODO)T (VO 4Tw, &0
— W=D (DU-D)=T(yU=1T gTy
Set iy =n+1,1=1+1, VO =W® =0, and go to Step 4.
3 (Inner step.) Compute
i."n+1 = Avn - Cnvn - (%/Pn) Vn-1
-y (D(l—l))—l(W(l—l))TAvm
(3.8)

Wn+1 = ATwn - ann - (nn/gn) Wn-1
_ W(l—l)(D(I-l))-T(V(l—l))TATwn_

4 Compute p, 11 = [[Voi1ll, a0d &1 = Wyl
If ppyy =00r &, =0, set L =n, and stop.
Otherwise, set

Vat1 = Vnt1/Prt1s Wni1 = Wi /€nya,
V(l) = [ V(l) vn+1 ] 3 W(l) = [ W(l) wn+1 ] )
DY = (wHTy®,

Step 2 of the algorithm is a block version of the classical Lanczos recur-
rences of Step 3 in Algorithm 3.1. Step 3 builds inner vectors spanning the
gap between two regular vectors. In this implementation, the inner vectors
are generated by a three-term inner recurrence, and then bi-orthogonalized
against the last block. The vectors generated by the look-ahead Lanczos
algorithm still obey (3.3), but now H,,, instead of having simply the tridiag-
onal structure (3.2), is an upper Hessenberg block tridiagonal matrix with
small blocks of size (n; —ny_;) X (ng —n_,) on the diagonal. Furthermore,
the bi-orthogonality relation (3.4) now reads

WV, = D, = diag (D, D@, ... ,D0).

Note that D,, is guaranteed to be nonsingular if n =n, ; — 1.

If only regular steps are performed, then Algorithm 3.3 reduces to the
classical Lanczos process. Thus, the strategy used in Step 1 for deciding
when to construct inner vectors should perform regular steps whenever pos-
sible. In addition, in practice the look-ahead algorithm must also be able to
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handle near-breakdowns, that is situations when
WiV, ~0, ¥,%0, W,#0.

Freund et al. (1991b) proposed a practical procedure for the decision in
Step 1 based on three different checks. For a regular step, it is necessary
that D) be nonsingular. Therefore, one of the checks monitors the size of
Omin(D®). The other two checks attempt to ensure the linear independence
of the Lanczos vectors. The algorithm monitors the size of the components
along the two previous blocks V() and V=1 respectively W* and W{-1),
in (3.7), and performs a regular step only if these terms do not dominate
the components Av, and ATw,, in the new Krylov spaces. For details, see
Freund et al. (1991b).

The look-ahead algorithm outlined here will handle serious breakdowns
and near-breakdowns in the classical Lanczos algorithm, except for the spe-
cial event of an incurable breakdown (Taylor, 1982). These are situations
where the look-ahead procedure would build an infinite block, without ever
finding a nonsingular D). Taylor (1982) has shown in his Mismatch Theo-
rem that, in case of an incurable breakdown, one can still recover eigenvalue
information, as the eigenvalues of the H,, are also eigenvalues of A. For lin-
ear systems, an incurable breakdown would require restarting the procedure
with a different choice of starting vectors. Fortunately, in practice round-off
errors will make an incurable breakdown highly unlikely.

Finally, we remark that, for the important class of p-cyclic matrices A,
serious breakdowns in the Lanczos process occur in a regular pattern. In
this case, look-ahead steps are absolutely necessary if one wants to exploit
the p-cyclic structure. For details of a look-ahead Lanczos algorithm for
p-cyclic matrices, we refer the reader to Freund et al. (1991a).

3.3. The QMR algorithm

We now turn to the quasi-minimal residual approach. The procedure was
first proposed by Freund (1989b) for the case of complex symmetric linear
systems, and then extended by Freund and Nachtigal (1991) for the case of
general nonHermitian matrices.

Recall from (2.2) that the nth iterate of any Krylov subspace method is
of the form

X, € Xg + K, (ro, A).
If now we choose
vy =ro/l|roll2 (3.9)

in Algorithm 3.3, then the right Lanczos vectors v, ..., v, span the Krylov
space K, (ry, A), hence we can write

Xp =X%o + Vnzm
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for some z,, € C". Together with (3.9) and the first relationship in (3.3),
this gives for the residual

r, =10 = AV,2, = Vopy (dn — HS)z,) , (3.10)

where d,, is defined as in (2.22). As V, ., is not unitary, it is not possible
to minimize the Euclidean norm of the residual without expending O(Nn?)
work and O(Nn) storage. Instead, one minimizes just the Euclidean norm
of the coefficient vector in (3.10), that is z,, € C™ is chosen as the solution
of the least-squares problem

Id, — H{Oz, |, = mig |ld, - HE)z,. (3.11)

As was pointed out by Manteuffel (1991), solving the minimization problem
(3.11) is equivalent to minimizing the residual in a norm that changes with
the step number:

XEXO%?(rO,A) D41 Wily(b — Ax)|l,, n=mn;—2.
Thus, the QMR does not contradict the Faber and Manteuffel Theorem 2.1,
which excludes only methods that minimize in a fized norm.

To solve the least-squares problem (3.11), one uses a QR factorization
of H®. As HY is upper Hessenberg, its QR factorization can be easily
computed and updated using Givens rotations; the approach is a standard
one (see, e.g., Golub and Van Loan (1989)). One computes a unitary matrix
Q,, € Cv+1X(n+1) and an upper triangular matrix R,, € C" such that

QnH'SLe) = [1‘(2)"] ) (3.12)
and then obtains z,, from
2, = R't,, t,=[I, 0]Q.d,, (3.13)
which gives
X, = Xq + V,R;'t,. (3.14)

This gives the following QMR algorithm.

Algorithm 3.4 (QMR algorithm)
0 Choose x € CV and set ry = b — Ax, py = |Irglly, V1 = To/po-
Choose w; € CV with ||w, ], = 1.
Forn=1,2,...,do:
1 Perform the nth iteration of the look-ahead Lanczos Algorithm 3.3.
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This yields matrices V,,, V,,,;, H,(,) which satisfy
AV, =V, H®.

2 Update the QR factorization (3.12) of H{® and the vector t, in
(3.13).

3 Compute x,, from (3.14).

4 If x,, has converged, stop.

We note that since Q,, is a product of Givens rotations, the vector t,, is easily
updated in Step 2. Also, as H,, is block tridiagonal, R, also has a block
structure that is used in Step 3 to update x,, using only short recurrences.
For complete details, see Freund and Nachtigal (1991).

The point of the quasi-minimal residual approach is that the least-squares
problem (3.11) always has a unique solution. From Step 4 of Algorithm 3.3,
Px, the subdiagonal entries of Hy (e ), are all nonzero, hence H,(f) has full
column rank, R, is nonsingular, and so (3.11) always defines a unique it-
erate x,,. This then avoids the Galerkin breakdown in the BCG algorithm.
But more importantly, the quasi-minimization (3.11) is strong enough to
enable us to prove a convergence theorem for QMR. This is in contrast to
BCG and methods derived from BCG, for which no convergence results are
known. Indeed, one can prove two theorems for QMR, both relating the
QMR convergence behaviour to the convergence of GMRES.

Theorem 3.5 (Freund and Nachtigal, 1991)

Suppose that the L x L matrix H; generated by the look-ahead Lanczos
algorithm is dlagonahzable, and let X € CL*L be a matrlx of eigenvectors
of H;. Thenforn=1,...,L -1,

e M
" 0” bR < ”Vn+1”2 N2(X) €ns

where
€n = YEP,: 1%) 1,\161}\1(21) B

By comparison, the convergence result for GMRES reads as follows.

Theorem 3.6 (Saad and Schultz, 1986)

Suppose that A is diagonalizable, and let U be a matrix of eigenvectors of

A. Then, forn=1,2,...,
[rSMRES |,

”%”2

where ¢, is as described previously.

< K’2(U) €ns
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Thus, Theorem 3.5 shows that GMRES and QMR solve the same approxima-
tion problem. The second convergence result gives a quantitative description
of the departure from optimality due to the quasi-optimal approach.

Theorem 3.7 (Nachtigal, 1991)
IRy < ko (Voga) e MR85y

For both Theorems 3.5 and 3.7, we note that the right Lanczos vectors
{v;} obtained from Algorithm 3.4 are unit vectors, and hence the condition
number of V,,; can be bounded by a slowly growing function,

WVasill, < vVR+1.

Next, we note that it is possible to recover BCG iterates, when they exist,
from the corresponding QMR iterates. We have

Theorem 3.8 (Freund and Nachtigal, 1991)
Letn=mn,—1,k=1,... . Then,

.
xgCC = x M 4+ Z2p,,

IEBCC Iy = [Irollalsy -~ spl -

Here, p,, is the nth column of V, R;;! and is computed anyway as part of
Step 3 of the QMR Algorithm 3.4, s,, and c,, are the sine and cosine of the
nth Givens rotation involved in the QR decomposition of H ,(f), and 7, is
the (n + 1)st component of @,d,,. The point is that the BCG iterate and
the norm of the BCG residual are both by-products of the QMR algorithm,
available at little extra cost, and the existence of the BCG iterate can be
checked by monitoring the size of the Givens rotation cosine c,,. Thus, QMR
can also be viewed as a stable implementation of BCG.

Finally, we remark that, for the special case of Hermitian matrices, the
QMR Algorithm 3.4 (with w; = ¥7) is mathematically equivalent to MIN-
RES. Hence, QMR can also be viewed as an extension of MINRES to non-
Hermitian matrices.

3.4, Transpose-free methods

In contrast to Krylov subspace methods based on the Arnoldi Algorithm 2.2,
which only require matrix—vector multiplications with A, algorithms such as
BCG and QMR, which are based directly on the Lanczos process, involve
matrix—vector products with A and AT. This is a disadvantage for certain
applications, where AT is not readily available. It is possible to devise
Lanczos-based Krylov subspace methods that do not involve the transpose
of A. In this section, we give an overview of such transpose-free schemes.
First, we consider the QMR algorithm. As pointed out by Freund and
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Zha (1991), in principle it is always possible to eliminate AT altogether, by
choosing the starting vector w; suitably. This observation is based on the
fact that any square matrix is similar to its transpose. In particular, there
always exists a nonsingular matrix P such that

ATP = PA. (3.15)

Now suppose that in the QMR Algorithm 3.4 we choose the special starting
vector w; = Pv,/||Pv||,. Then, with (3.15), one readily verifies that the
vectors generated by look-ahead Lanczos Algorithm 3.3 satisfy

w, = Pv,_/||Pv,|, foralln. (3.16)

Hence, instead of updating the left Lanczos vectors {w,} by means of the
recursions in (3.7) or (3.8), they can be computed directly from (3.16). The
resulting QMR algorithm no longer involves the transpose of A; in exchange,
it requires one matrix—vector multiplication with P in each iteration step.
Therefore, this approach is only viable for special classes of matrices A, for
which one can find a matrix P satisfying (3.15) easily, and for which, at the
same time, matrix—vector products with P can be computed cheaply. The
most trivial case are complex symmetric matrices (see Section 6), which fulfil
(3.15) with P = I. Another simple case are matrices A that are symmetric
with respect to the antidiagonal. These so-called centrosymmetric matrices,
by their very definition, satisfy (3.15) with P = J, where

J= 1.0
g . . :

is the N x N antidiagonal identity matrix. Note that Toeplitz matrices
(see Section 7) are a special case of centrosymmetric matrices. Finally, the
condition (3.15) is also fulfilled for matrices of the form

A=TM™, P=M1,

where T' and M are real symmetric matrices and M is nonsingular. Ma-
trices A of this type arise when real symmetric linear systems Tz = b are
preconditioned by M. The resulting QMR algorithm for the solution of
preconditioned symmetric linear system has the same work and storage re-
quirements as preconditioned SYMMLQ or MINRES. However, the QMR
approach is more general, in that it can be combined with any nonsingu-
lar symmetric preconditioner M, while SYMMLQ and MINRES require M
to be positive definite M (see, e.g., Gill et al., 1990). For strongly indefi-
nite matrices T, the use of indefinite preconditioners M typically leads to
considerably faster convergence; see Freund and Zha (1991) for numerical
examples.
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Next, we turn to transpose-free variants of the BCG method. Sonneveld
(1989) with his conjugate gradients squared algorithm (CGS) was the first
to devise a transpose-free BCG-type scheme. Note that, in the BCG Al-
gorithm 3.2, the matrix AT appears merely in the update formulae for the
vectors T,, and q,. On the other hand, these vectors are then used only
for the computation of the vector products p, = Fir, and o0, = 2 Aq,,.
Sonneveld observed that, by rewriting these products, the transpose can be
eliminated from the formulae, while at the same time one obtains iterates

X2n (S xO + Kzn(ro, A), n= 1, 2, ey (3.17)

that are contained in a Krylov subspace of twice the dimension, as compared
to BCG. First, we consider p,,. From Algorithm 3.2 it is obvious that

r,= ¢n(A)r0 and i'-.'n = ¢n(AT)i:01 (318)

where v, is the nth residual polynomials (recall (2.3) and (2.4)) of the BCG
process. With (3.18), one obtains the identity

P =T§ (¥,(4))*r, (3.19)
which shows that p,, can be computed without using A7. Similarly,
q, = ‘Pn(A)rO and (-in = ‘Pn(AT)fO’
for some polynomial ¢,, € P,,, and hence
On = igA ((pn(A))2 To- (320)

By rewriting the vector recursions in Algorithm 3.2 in terms of ¥, and ¢,
and by squaring the resulting polynomial relations, Sonneveld showed that
the vectors in (3.19) and (3.20) can be updated by means of short recursions.
Furthermore, the actual iterates (3.17) generated by CGS are characterized
by

2
r§3S = b — Axy, = (¥5°%(4)) ro. (3.21)

Hence the CGS residual polynomials 455 = (1/)5’00)2 are just the squared
BCG polynomials. As pointed out earlier, BCG typically exhibits erratic
convergence behaviour. As is clear from (3.21), these effects are magnified
in CGS, and CGS typically accelerates convergence as well as divergence of
BCG. Moreover, there are cases for which CGS diverges, while BCG still
converges.

For this reason, more smoothly converging variants of CGS have been
sought. Van der Vorst (1990) was the first to propose such a method. His Bi-
CGSTAB again produces iterates of the form (3.17), but instead of squaring
the BCG polynomials as in (3.21), the residual vector is now of the form

ra, = YECC (A)x, (A)r.
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Here x,, € P,,, with x,,(0) = 1, is a polynomial that is updated from step to
step by adding a new linear factor:

Xn(A) = (1 - nn)‘)x'n—l(A)' (322)

The free parameter 7,, in (3.22) is determined by a local steepest descent
step, i.e. n,, is the optimal solution of

min (7 ~ 74) X1 (AJEC(A)rl,

neC
Due to the steepest descent steps, Bi-CGSTAB typically has much smoother
convergence behaviour than BCG or CGS. However, the norms of the Bi-
CGSTAB residuals may still oscillate considerably for difficult problems.
Finally, Gutknecht (1991) has noted that, for real A, the polynomials x,,
will always have real roots only, even if A has complex eigenvalues. He
proposed a variant of Bi-CGSTAB with polynomials (3.22) that are updated
by quadratic factors in each step and thus can have complex roots in general.

In the CGS algorithm, the iterates (3.17) are updated by means of a

formula of the form

xchs = xg(?zil) +an_1(Yan-1+ Yan)- (3.23)

Here the vectors y,,ys,- .., Yo, satisfy
span{y;,¥2:-- -, ¥m} = Kn(rg, 4), m=1,2,...,2n.

In other words, in each iteration of the CGS algorithm two search directions
Yon—1 and y,,, are available, while the actual iterate is updated by the one-
dimensional step (3.23) only. Based on this observation, Freund (1991b) has
proposed a variant of CGS that makes use of all available search directions.
More precisely, instead of one iterate xg,?s per step it produces two iterates
Xy,,_1 and x,,, of the form

Xm=x0+IYI Yy, - ym]zm7 szCm. (324)
Furthermore, the free parameter vector z,, in (3.24) can be chosen such that
the iterates satisfy a quasi-minimal residual condition, similar to the quasi-
minimization property of the QMR Algorithm 3.4. For this reason, the
resulting scheme is called transpose-free quasi-minimal residual algorithm
(TFQMR). For details, we refer the reader to Freund (1991b), where the
following implementation of TFQMR is derived.
Algorithm 3.9 (TFQMR algorithm)
0 Choose x, € CV.

Set Wi =y1 =r0=b—Ax0, VO=Ay1, d0=O.

Set 79 = [|rgllz; Fo =0, 79 = 0.

Choose T € CV, ¥, # 0, and set p, = T ro.
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Forn=1,2,...,do:
1 Compute
Onoy =F Va1,
Op_1 = Pn_1/0n_y,
Yon = ¥Yon-1— %, _1Vp_1-
2Form=2n-1,2ndo:
Compute

Wil = Wy — an—lAyrm

I = “wm+1”2/T -1 T 1//1+ 9%,

T = Tm—19mCm> Tm = €201,

Ay = Y + (921 1/ 1)1,

Xy = X1+ Dl

If x,,, has converged, stop.
3 Compute

Pn = i"31""2n+1’
Br = Pn/Pr-1;

Y2nt1 = Wony1 + BnYon,
Vp = AYoni1 + Bn(Ayon + Bavin_1)-

We would like to point out that the iterates generated by the QMR Al-
gorithm 3.4 and the TFQMR Algorithm 3.9 are different in general.

Another transpose-free QMR method was proposed by Chan et al. (1991).
Their scheme is mathematically equivalent to the QMR Algorithm 3.4, where
the latter is based on the classical Lanczos process without look-ahead. The
method first uses a transpose-free squared version of the Lanczos algorithm
(see Gutknecht, 1990a) to generate the tridiagonal matrix (3.2). The right
Lanczos vectors v,, are then computed by running the corresponding recur-
sion in Step 3 of Algorithm 3.1, and finally the QMR iterates are obtained
as in Algorithm 3.4.

Freund and Szeto (1991) have derived yet another transpose-free QMR
scheme, which is modelled after CGS and is based on squaring the residual
polynomials of the standard QMR Algorithm 3.4.

However, the algorithm by Chan et al. and the squared QMR approach
both require per iteration three matrix—vector products with A and hence
they are more expensive than CGS, Bi-CGSTAB or TFQMR, which involve
only two such products per step.

Finally, we remark that none of the transpose-free methods considered in
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this section, except for Freund and Zha’s simplified QMR algorithm based
on (3.15), addresses the problem of breakdowns. Indeed, in exact arithmetic,
all these schemes break down every time a breakdown (3.5) or (3.6) occurs
in the BCG Algorithm 3.2. Practical look-ahead techniques for avoiding
exact and near-breakdowns in these transpose-free methods still have to be
developed.

3.5 Related work and historical remarks

The problem of breakdowns in the classical Lanczos algorithm has been
known from the beginning. Although a rare event in practice, the possibil-
ity of breakdowns certainly has brought the method into discredit and has
prevented many people from actually using the algorithm. On the other
hand, it was also demonstrated (see Cullum and Willoughby (1986)) that
the Lanczos process — even without look-ahead — is a powerful tool for sparse
matrix computation.

The Lanczos method has intimate connections with many other areas of
Mathematics, such as formally orthogonal polynomials (FOPs), Padé ap-
proximation, Hankel matrices and control theory. The problem of break-
downs has a corresponding formulation in all of these areas, and remedies
for breakdowns in these different settings have been known for quite some
time. For example, the breakdown in the Lanczos process is equivalent to a
breakdown of the generic three-term recurrence relationship for FOPs, and
it is well known how to overcome such breakdowns by modifying the recur-
sions for FOPs (see Gragg (1974), Draux (1983), Gutknecht (1990b) and
the references given there). Kung (1977) and Gragg and Lindquist (1983)
presented remedies for breakdowns in the context of the partial realization
problem in control theory. The Lanczos process is also closely related to
fast algorithms for the factorization of Hankel matrices, and again it is well
known how to overcome possible breakdowns of these algorithms (see Heinig
and Rost (1984)). However, in all these cases, only the problem of exact
breakdowns has been addressed. Taylor (1982) and Parlett et al. (1985)
were the first to propose a modification of the classical Lanczos process that
remedies both exact and near-breakdowns.

In recent years, there has been a revival of the nonsymmetric Lanczos
algorithm, and since 1990, in addition to the papers we have already cited
in this section, there are several others dealing with various aspects of the
Lanczos process. We refer the reader to the papers by Boley et al. (1991),
Boley and Golub (1991), Brezinski et al. (1991), Gutknecht (1990c), Joubert
(1990), Parlett (1990), and the references given therein.

Note that Algorithm 3.2 is only one of several possible implementations
of the BCG approach; see Joubert (1990) and Gutknecht (1990a) for an
overview of the different BCG variants. As for the nonsymmetric Lanczos
process, exact and near-breakdowns in the BCG methods can be avoided
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by incorporating look-ahead procedures. Such look-ahead BCG algorithms
have been proposed by Joubert (1990) and Gutknecht (1990c). Particu-
larly attractive in this context is the algorithm called Lanczos/Orthodir in
Joubert (1990). Instead of generating the search directions q,, and q, by
coupled two-term recursions as in Algorithm 3.2, in Lanczos/Orthodir they
are computed by three-term recurrences. This eliminates the vectors r,, and
f,, and hence the second of the two possible breakdowns (3.5) and (3.6).
We note that Brezinski et al. (1991) have proposed an implementation of
the BCG approach that is mathematically equivalent to Lanczos/Orthodir.

Finally, recall that the algorithms QMR, Bi-CGSTAB, and TFQMR are
designed to generate iterates that converge more smoothly than BCG and
CGS. A different remedy for the erratic convergence behaviour of BCG or
CGS was proposed by Schonauer (see Weiss (1990)). The approach used
is to run plain BCG or CGS and then apply a smoothing procedure to the
sequence of BCG or CGS iterates, resulting in iterates with monotonically
decreasing residual norms. However, since the process is based directly on
BCG or CGS, this approach inherits the numerical problems of BCG and
CGS.

4. Solving the normal equations is not always bad

In this section, we consider CGNR and CGNE in more detail. Recall from
Section 1 that CGNR and CGNE are the algorithms that result when (1.1)
is solved by applying standard CG to either one of the normal equations
(1.2) or (1.3), respectively. Clearly, for nonsingular A, both systems (1.2)
and (1.3) are equivalent to the original system (1.1). From the minimization
property (2.10) of CG, it follows that CGNR produces iterates

x, € %+ K, (Ao, 474), n=12,..., (4.1)
that are characterized by the minimal residual condition

b - Ax ||, = min b — Ax|,.
Ib—dx,lp=__  min . b- Axl,
Similarly, CGNE generates iterates (4.1) that satisfy the minimal error prop-
erty
Ab - = i A7 — x|,
| R, S N x|l
Note that the letters ‘R’ and ‘E’ in CGNR and CGNE indicate the minimiza-
tion of the residual or of the error, respectively. We also remark that the
LSQR algorithm of Paige and Saunders (1982) is mathematically equivalent
to CGNR, but has better numerical properties.
Since the convergence of CG depends on the spectrum of the coefficient
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matrix, the convergence behaviour of CGNR and CGNE depends on
NAT 4) = {0? | o € o(4)},

i.e. on the squares of the singular values of A. In particular, the worst-case
convergence behaviour of CGNR and CGNE is governed by

ry (AT 4) = (ry(4))?,

which suggests that convergence can be very slow even for matrices A with
moderate condition numbers. This is indeed true in many cases, and gen-
erally it is preferable to use CG-type methods that are applied directly to
(1.1) rather than CGNR or CGNE.

Nevertheless there are special cases for which solving the normal equa-
tions is optimal. A simple case are unitary matrices A for which CGNR and
CGNE find the exact solution after only one step, while Krylov subspace
methods with iterates (2.1) tend to converge very slowly (see Nachtigal et
al., 1990a). More interesting are cases for which CGNR and CGNE are
optimal, in that they are mathematically equivalent to ideal CG-type meth-
ods based on the MR or OR Conditions (2.11) or (2.12). Typically, these
situations arise when the spectrum of A has certain symmetries. Since these
equivalences are not widely known, we collect here a few of these results.
In the following, xM® and xQ® denote iterates defined by (2.11) and (2.12),
respectively.

First, we consider the case of real skew-symmetric matrices.

Theorem 4.1 (Freund, 1983)
Let A= —AT be areal N x N matrix, and let b € RN and x, € R". Then:

MR _ MR _ _CGNR =
Xoni1i = Xg, = X, , n=01,...,
OR _ . ,CGNE =
Xon = X, ,y n=12,....

Moreover, no odd OR iterate xOF | exists.

Next, we turn to shifted skew-symmetric matrices of the form (2.13). For
this class of matrices Eisenstat (1983a, b) has obtained the following result
(see also Szyld and Widlund (1989)).

Theorem 4.2 Let A =1—S where § = —S7 is a real N x N matrix, and
let b € RY and x, € R". Let xCGNE and %SGNE denote the iterates gener-
ated by CGNE started with initial guess x, and X, = b 4+ 5x;, respectively.
Then, for n=0,1,..., it holds:

OR __ CGNE
Xon = X, ’
OR _ &CGNE

Xontl = Xy .
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We remark that for the MR and CGNR approaches a result corresponding
to Theorem 4.2 does not hold (see Freund, 1983).

Finally, we consider linear systems (1.1) with Hermitian coefficient ma-
trices A. Note that A has a complete set of orthonormal eigenvectors, and
hence one can always expand the initial residual in the form:

m
rp = ijzj7 (4.2)
j=1
where
p] € C, AZJ = /\jzj, Al < /\2 <--- < )\m, zfzk = 6jk'

In the following theorem, xME denotes the iterate defined by (2.16).

Theorem 4.3 (Freund, 1983)
Assume that the expansion (4.2) is ‘symmetric’, i.e. m = 2/ is even and

Aj = —Amt1-js |Pj| = |pm+1-i, I=12,...,1L
Then, for n =0,1,..., it holds:

MR MR
Xopt1 = Xop = xSGNR, n=20,1,...,
ME _ _ME _ _OR _ ,CGNE -
X2 Xonl1 = X3, = X, , n=12,....

Moreover, no odd OR iterate x9F , exists.

5. Estimating spectra for hybrid methods

‘We now turn to parameter-dependent schemes. As mentioned in Section 2.1,
methods in this class require a priori knowledge of some spectral properties
of the matrix. Typically, it is assumed that some compact set G is known,
which in a certain sense approximates the spectrum of A and, in particular,
satisfies (2.7). Given such a set G, one then constructs residual polynomials
1,, as some approximations to the optimal polynomials in (2.9). We would
like to stress that, in view of (2.4) and (2.9), it is crucial that G excludes
the origin. Since in general one does not know in advance a suitable set G,
parameter-dependent methods combine an approach for estimating the set
G with an approach for solving the approximation problem (2.9), usually
cycling between the two parts in order to improve the estimate for G. For
this reason, the algorithms in this class are often called hybrid methods.
In this section, we review some recent insights in the problem of how to
. estimate the set G.

The standard approach for obtaining G is to run a few steps of the Arnoldi
Algorithm 2.2 to generate the upper Hessenberg matrix H,, (2.24) and then
compute its spectrum A(H, ). Saad (1980) showed that the eigenvalues of
H,, are Ritz values for A and can be used to approximate the spectrum
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A(A), hence one takes the convex hull of A(H,,) as the set G. Once the set
is obtained, a hybrid method turns to solving the complex approximation
problem (2.9), and the possibilities here are numerous.

However, there are problems with the approach outlined here, originating
from the use of the Arnoldi Ritz values. In general, there is no guarantee
that the convex hull of A\(H,,) does not include the origin or, indeed, that one
of the Ritz values is not at or near the origin. For matrices with spectrum in
both the left and right half-planes, the convex hull of the Ritz values might
naturally enclose the origin. Nachtigal et al. (1990b) give an example of a
matrix whose spectrum is symmetric with respect to the origin, so that the
convex hull of A(H,,) will generally contain the origin, and on every other
step, one of the Ritz values will be close to the origin. A second problem
is that the approach aims to estimate the spectrum of A, which may be
highly sensitive to perturbations, especially for nonnormal matrices. In these
cases, a more natural concept is the pseudospectrum A (A), introduced by
Trefethen (1991):

Definition 5.1 For € > 0 and A € CV*¥ | the e-pseudospectrum A (A) is
given by

A(4) ={reC|reXA+A), ], <e} (5.1)

As is apparent from (5.1), the pseudospectrum, in general, can be expected
to be insensitive to perturbations of A, even for highly nonnormal matrices.
For practical purposes, the sets A,(A) of interest correspond to values of
the parameter ¢ that are small relative to the norm of A but larger than
round-off.

It is easy to construct examples where a hybrid algorithm using the exact
spectrum A(A) of A will in fact diverge, while the same hybrid algorithm
using the pseudospectrum A (A) will converge (see Nachtigal et al. (1990b)
and Trefethen (1991)). Unfortunately, in general the pseudospectrum A (A)
cannot be easily computed directly. Fortunately, it turns out that one can
compute approximations to the pseudospectrum; this is the approach taken
in the hybrid introduced by Nachtigal et al. (1990b). They observed that
the level curves — or lemniscates — of the GMRES residual polynomial bound
regions that approximate the pseudospectrum A_(A). Let

Calm) = A eC| [N =1}, n20,

be any lemniscate of the residual polynomial 9,,. Due to the normalization
(2.4), the region bounded by C,(n) with 7 < 1 will automatically exclude
the origin; in particular, 0 cannot be a root of a residual polynomial. In
addition, since GMRES is solving the minimization problem (2.11), ,, will
naturally be small on an appropriate set G. Motivated by these considera-
tions, Nachtigal et al. observed that the region bounded by the lemniscate
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Cp(n,) with
_ |Irn”2

= <1
”1'0”2

n

usually yields a suitable set G.

The GMRES residual polynomials are kernel polynomials, and their roots
are a type of Ritz values called pseudo-Ritz values by Freund (1989a). In
fact, one is not restricted to using the GMRES residual polynomial, but
could use the residual polynomials from other minimization methods, such
as QMR or its transpose-free versions. In these cases, the residual poly-
nomials are no longer kernel polynomials, but rather, they are quasi-kernel
polynomials (Freund, 1991c). Nevertheless, their lemniscates still yield suit-
able sets G, and their roots are also pseudo-Ritz values of A.

Freund has also proposed an algorithm to compute pseudo-Ritz values,
using the upper Hessenberg matrix H. T(f) (2.19) appearing in the recurrence
(2.17). One uses the fact that kernel and quasi-kernel polynomials can be

defined by
det ((H,(f))H(Hr(f)) — AHH )

det ( (H,(f))H(H,(f)»

which makes it clear that the roots of v,, can be obtained from the general-
ized eigenvalue problem

(H,(f))H(H,(f)) z=MHHz, z#0eCm

Yn(A) =

2

Finally, we should point out another set that has been proposed as a
candidate for G in (2.7), namely the field of values. Defined as

F={zfAz|zeC", ||z, =1},

the field of values has the advantage that it is easier to compute (see, e.g.,
Ruhe (1987)) than the pseudospectrum. However, the field of values is
convex and always at least as large as the convex hull of A(A), and hence
may once again enclose the origin. For more details on the field of values in
iterative methods, we refer the reader to Eiermann (1991).

The literature on hybrid methods for nonHermitian linear systems starts
with an algorithm proposed by Manteuffel (1978), which combines a modi-
fied power method with the Chebyshev iteration. Since then, literally dozens
of hybrid methods have been proposed, most of which use Arnoldi in the first
phase and differ in the way they compute the residual polynomial 1,, in (2.9).
For an overview of some of these algorithms, see Nachtigal et al. (1990b).
The hybrid by Nachtigal et al. was the first to avoid the explicit compu-
tation of an estimate of A(A). Instead, it explicitly obtains the GMRES
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residual polynomial and applies it using Richardson’s method until conver-
gence. Finally, hybrids recently introduced include an algorithm by Saylor
and Smolarski (1991), which combines Arnoldi with Richardson’s method,
and an algorithm proposed by Starke and Varga (1991), which combines
Arnoldi with Faber polynomials.

6. CG-type methods for complex linear systems

While most linear systems arising in practice are real, there are important
applications that lead to linear systems with complex]L coefficient matrices
A. Partial differential equations that model dissipative processes usually in-
volve complex coefficient functions or complex boundary conditions, and dis-
cretizing them yields complex linear systems. An important example for this
category is the complex Helmholtz equations. Other applications that lead
to complex linear systems include the numerical solution of Schrodinger’s
equation, underwater acoustics, frequency response computations in con-
trol theory, semiconductor device simulation, and numerical computations
in quantum chromodynamics; for details and further references, see Bayliss
and Goldstein (1983), Barbour et al. (1987), Freund (1989b, 1991a), and
Laux (1985). In all these applications, the resulting linear systems are usu-
ally nonHermitian. In this section, we review some recent advances in un-
derstanding the issues related to solving complex nonHermitian systems.

Until recently, the prevailing approaches used when solving complex linear
systems have consisted of either solving the normal equations or rewriting
the complex system as a real system of dimension 2N. However, as indicated
already in Section 4, the normal equations often lead to systems with very
poor convergence rates, and this has indeed been observed for many of the
complex systems of interest. The other option is to split the original matrix
A into its real and imaginary parts and combine them into a real system
of dimension 2N. There are essentially only two different possibilities for
doing this, namely

Rex] _[Reb _[ReA —ImA
A, [Imx]—[lmb]’ A= [ImA Re A ] (6.1)
and
Rex | _ [Reb __ [ReA ImA
A**[—ImX]'[Imb]’ A= [ImA —ReA]' (6.2)

Unfortunately, it turns out that this option is not viable either. As Freund
(1989b, 1992) pointed out, both A, and A,, have spectral properties that
make them far more unsuitable for Krylov space iterations than the original

t In this section, ‘complex’ will imply the presence of imaginary components.
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system was. The spectrum of A, in (6.1) is given by

X(A,) = A(4) UX(A), (6.3)
while the spectrum of 4, in (6.2) is given by
MA,) ={reC| X e A(AA)}. (6.4)

In particular, note that the spectrum (6.3) is symmetric with respect to the
real axis, while the spectrum (6.4) is symmetric with respect to both the real
and imaginary axes. The point is that in both cases, the spectrum of the real
system is either very likely to or is guaranteed to contain the origin, thus
presenting a Krylov subspace iteration with the worst possible eigenvalue
distribution. As a result, both approaches have had very poor results in
practice, and have often led to the conclusion that complex systems are ill
suited for iterative methods.

Therefore, instead of solving the normal equations or either one of the
equivalent real systems (6.1) or (6.2), it is generally preferable to solve the
original linear system by a CG-like Krylov subspace methods. In particu-
lar, if A is a general nonHermitian matrix, then we recommend using the
Lanczos-based algorithms discussed in Section 3 or GMRES. However, in
many applications, the resulting complex linear systems have additional
structure that can be exploited. For example, often complex matrices of the
form (2.13) arise. Recall from Theorem 2.1 that ideal CG-type algorithms
based on the MR or OR property (2.11) or (2.12) exist for such shifted Her-
mitian matrices. Freund (1990) has derived practical implementations of the
MR and OR approaches for the class of matrices (2.13). These algorithms
can be viewed as extensions of Paige and Saunders’ MINRES and SYMMLQ
for Hermitian matrices (see Section 2.3). As in the case of SYMMLQ, the
OR implementation for shifted Hermitian matrices also generates auxiliary
iterates xME ¢ x, + K, (Afry, A) that are characterized by the minimal
error property

||A_1b - xrh:[Eﬂz = “A-Ib - x||2.

min

X€X0+Kn(AHrg,A)
Hence the OR algorithm proposed by Freund also generalizes Fridman’s
method to shifted Hermitian matrices. Unfortunately, when matrices A
of the form (2.13) are preconditioned by standard techniques, the special
structure of A is destroyed. In Freund (1989b) it is shown that the shift
structure can be preserved when polynomial preconditioning is used, and
results on the optimal choice of the polynomial preconditioner are given.

Another special case that arises frequently in applications are complex
symmetric matrices A = AT. For example, the complex Helmholtz equa~
tions leads to complex symmetric systems. As pointed out in Section 3.4, the
QMR Algorithm 3.4 can take advantage of this special structure, and work
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and storage is roughly halved. We remark that the complex symmetry struc- -
ture is preserved when preconditioning is used, if the preconditioner M is
again symmetric, as is the case for all standard techniques. For an overview
of other CG-type methods and further results for complex symmetric linear
systems, we refer the reader to Freund (1991a, 1992).

7. Large dense linear systems

As mentioned in Section 1, there are certain classes of large dense linear
systems for which it is possible to compute matrix—vector products cheaply;
for these systems, iterative methods remain an attractive option. Typically,
the matrix—vector product takes advantage of either some special structure
of the matrix or of some special property of the underlying operator. We
will briefly discuss one situation from each class.

The first case is the solution of integral equations involving a decaying
potential, such as a gravitational or Coulombic potential. Some typical
applications are the solution of N-body problems, vortex methods, poten-
tial theory, and others. In these problems, the effort required by a naive
computation of a matrix-vector product is generally O(N2), as it involves
computing the influence of each of N points on all the other N — 1 points.
However, Carrier et al. (1988) noticed that it is possible to approximate
the rgsult of the matrix—vector product Ax in only O(N) time, rather than
O(N4).

The main idea behind their algorithm is to group points in clusters and
evaluate the influence of entire clusters on faraway points. The cumulative
potential generated by m charges in a cluster can be expressed as a power
series. If the power series is truncated after p terms, then the work required
to compute it turns out to be O(mp). Applying the cumulative influence
to n points in a cluster well separated from the first requires an additional
O(np) work, for a total of O(mp + np) work, as compared to the O(mn)
work required to compute the individual interactions. Finally, the point is
that the number p of terms in the series is determined by the preassigned
precision to which the series is computed, and once chosen, p becomes a
constant, giving an O(m + n) algorithm. For a complete description of the
algorithm, see Carrier et al. (1988).

While the Carrier et al. algorithm is the first in the class of fast multipole
methods, it falls in the bigger class of hierarchical algorithms. Several other
algorithms have been proposed in this class; see for example Hockney and
Eastwood (1981), Appel (1985), Rokhlin (1985). More recently, Hanrahan
et al. (1991) have proposed a hierarchical algorithm for radiosity problems
in computer graphics, and Greenbaum et al. (1991) have introduced an
algorithm that uses the Carrier et al. algorithm combined with GMRES to
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solve Laplace’s equation in multiply connected domains. We refer the reader
to these articles for details of the algorithms, as well as further references.

Another important class of dense linear systems where the matrix-vector
product can be computed cheaply are Toeplitz systems, where the coefficient
matrix A has the form

to o tneg
A= | Bt to :
: t,
tv-y 0t b

A matrix—vector product with an N x N Toeplitz matrix can be computed
with O(N log N) operations by means of the fast Fourier transform. Fur-
thermore, as Chan and Strang (1989) observed, Toeplitz systems can be
preconditioned efficiently using circulant matrices

- -

¢ 't 't CN-1
N1 G - CN-2
M= : . :
: c
L cl e e cN—l CO |

Recall from Section 2.5 that preconditioned iterative methods require the
solution of linear systems with the preconditioner M in each iteration. In
the case of circulant M, these systems can also be solved by means of fast
Fourier transform with only O(NN log N) operations per system.

8. Concluding remarks

In conclusion, we have covered some of the developments in iterative meth-
ods, especially for nonHermitian matrices. The introduction of CGS in the
late 1980s spurred renewed interest in the nonsymmetric Lanczos algorithm,
with most of the effort directed towards obtaining a method with better con-
vergence properties than BCG or CGS. Several BCG-based algorithms were
proposed, such as Bi-CGSTAB, introduced by Van der Vorst (1990). The
quasi-minimal residual technique was introduced by Freund (1989b) in the
context of complex symmetric systems, then later coupled with a new vari-
ant of the look-ahead Lanczos approach to obtain a general nonHermitian
QMR algorithm. Finally, several transpose-free algorithms based on QMR
have been introduced recently, which trade the multiplication by AT for
one or more multiplications by A. However, their convergence properties
are not well understood, and none of these algorithms have been combined
with look-ahead techniques yet. In general, it seems that the transpose-free
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methods have more numerical problems than the corresponding methods
that use AT, and more research is needed into studying their behaviour.

With the advent of Lanczos-based methods that require little work and
storage per step, the importance of preconditioners has decreased. With
GMRES or similar algorithms, the high cost of the method makes restarts
necessary in practice, which generally results in much slower convergence.
As a result, preconditioned GMRES requires a very effective preconditioner,
so that the preconditioned system requires few iterations to converge. The
problem is that effective preconditioners are often too expensive, especially
on parallel machines, where the inherently serial nature of many precondi-
tioners makes their use unappealing. In contrast, restarts are not necessary
with Lanczos-based methods, and hence a wider array of preconditioners
— in particular, cheaper or more parallelizable preconditioners — becomes
usable.

Finally, even though the field of iterative methods has made great progress
in the last few years, it is still in its infancy, especially with regard to
the packaged software available. Whereas there are well-established robust
general-purpose solvers based on direct methods, the same cannot be said
about solvers based on iterative methods. There are no established itera-
tive packages of the same robustness and wide acceptance as, for example,
the LINPACK library, and as a result many of the scientists who use itera-
tive methods write their own specialized solvers. We feel that this situation
needs to change, and we would like to encourage researchers to provide code
for their methods.
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